

Adis Osmankic - Team leader

Zane Seuser - Cloud Architect

Jet Jacobs - System Architect

Rishabh Bansal - Report Manager

Gavin Monroe - Meeting Scribe

Team Number: sdmay21-39

Client: PwC

Adviser: Lotfi Ben Othmane

Team Email: sdmay21-39@iastate.edu

Website: https://sdmay21-39.sd.ece.iastate.edu

Last Revised: Sept. 29, 2020

mailto:sdmay21-39@iastate.edu

Executive Summary

Development Standards & Practices Used
● Agile Development
● Cloud IAC (Infrastructure As Code)
● Modular Code
● Well-Documented Code

Summary of Requirements

● Simple User Interface
● Easily Create & Manage Any Amount of Lab Environments
● Able To Provision Labs On Multiple Cloud Providers

Applicable Courses from Iowa State University Curriculum

● COM S 309 (Software Development Practices)
● COM S 319 (Construction of User Interfaces)
● COM S 362 (Object-Oriented Analysis & Design)
● COM S 363 (Database Systems)
● SE 329 (Software Project Management)
● SE 339 (Software Architecture & Design)

New Skills/Knowledge Acquired That Was Not Taught In Courses

● Knowledge Of Different Cloud Providers
● Knowledge Of Infrastructure As Code
● Python Development
● React Development

1

Table of Contents
Table of Contents 2

List of Figures/Tables/Symbols/Definitions/Diagrams 3

1 Introduction 4
1.1 Acknowledgement 4
1.2 Problem and Project Statement 4
1.3 Operational Environment 4
1.4 Requirements 5
1.5 Intended Users and Uses 5
1.6 Assumptions and Limitations 5
1.7 Expected End Product and Deliverables 5

2 Project Plan 6
2.1 Task Decomposition 6
2.2 Risks And Risk Management/Mitigation 7
2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 8
2.4 Project Timeline/Schedule 9
2.5 Project Tracking Tools & Procedures 9
2.6 Personnel Effort Requirements 9
2.7 Other Resource Requirements 11
2.8 Financial Requirements 11

3 Design 11
3.1 Previous Work 11
3.2 Design Thinking 12
3.3 Proposed Design 12
3.4 Design Analysis 13
3.5 Development Process 13

4 Testing 15
4.1 Unit Testing 15
4.2 Integration/Interface Testing 15
4.3 Acceptance Testing 15

2

List of Figures/Tables/Symbols/Definitions/Diagrams

Definitions:
AWS: Amazon Web Services
ECS: Elastic Container Service
ECR: Elastic Container Repository
GCP: Google Cloud Platform
IAC: Infrastructure As Code
UI: User Interface

List of Tables:
Task Breakdown Page 5
Task Summary Page 6
Risk Evaluation Page 5
Milestones Page 6
Project Schedule Page 6
Effort Approximation Page 6

3

1 Introduction

1.1 Acknowledgement
Thank you to our client PwC, and our contact, Matt Weidman, for the technical support
and architectural guidance. We would also like to thank Lotfi Ben Othmane, our advisor
for this project, for helping us through the planning and development process.

1.2 Problem and Project Statement
Currently, our sponsor, PwC, provisions lab environments for capture the flag events
within a variety of cloud providers and on-premise resources by hand. This does not scale
well because there is no way to quickly create and manage a large amount of lab
environments. There is also no way to easily make sure that all these environments are
the same.

By developing the Cloud Environment Manager application, we hope to provide PwC
with a clean and simple user interface that allows them to quickly and easily deploy lab
environments to their desired cloud providers. The application will also allow them to
manage and destroy their existing lab environments once they are no longer needed.

1.3 Operational Environment
This main application will be hosted within Amazon Web Services. The front-end
application will be accessible from a web browser and the back-end API it interfaces with
will be able to deploy lab environments to different cloud providers such as AWS, Azure,
GCP, etc.

4

1.4 Requirements
● Functional Requirements

○ A user shall not be able to have access without signing in via Google OAuth2
○ A user should be able to sign in to the application
○ A user should be able to view a list of existing lab environments
○ A user should be able to view the status of existing lab environments
○ A user should be able to view attributes of existing lab environments
○ A user should be able to create lab environments within AWS, GCP, and Azure
○ A user should be able to destroy existing lab environments

● Non-Functional Requirements
○ The application should be available at all times
○ The application should properly handle errors behind-the-scenes
○ The user interface should be visually appealing
○ The user interface should be easy to use

1.5 Intended Users and Uses
This project is designed for use by an organization that needs to deploy lab environments
to different cloud platforms for a variety of different users. This project is focused on
education and deploying capture the flag events to large groups of people for training. By
using this product, organization admins will be able to deliver training resources to
members of the organization quickly and easily.

1.6 Assumptions and Limitations
● Assumptions

○ The organization has a cloud platform
○ The organization has the resources to host the user interface and backend
○ The organization can configure the lab environments to accept programmatic

access to the virtual machine resources in the cloud
● Limitations

○ There are some configurations that need to be manually changed by an
organization

○ Only administrators can set up the application

1.7 Expected End Product and Deliverables
● Cloud-Hosted Cloud Environment Manager And Source Code
● Project Documentation
● May 2021 Hand-Off

5

2 Project Plan

2.1 Task Decomposition

Task Description Deadline

Orchestrator Flow Flow of the orchestrator 10/3

Deploy basic EC2 Need everyone to fully
understand Ansible by
running through some
examples of deploying to
EC2

10/2

Configure EC2 Need to customize the vm
for deployment

10/7

Create VM From Scratch Fully custom make a VM
from scratch

10/13

Hook Ansible to Backend
Call

Need the playbooks to be
run from a backend service

10/20

Configure Automation
Scripts

Configure the scripts to be
run dynamically for the
project

10/27

Create Full Demo Need a demo of deployment
for the client

11/15

6

Setup group cloud
environments for team use

We need environments to be
setup for group usage

10/2

Configure AWS for labs Configure AWS to properly
host the lab environment

10/20

Configure Azure for labs Configure Azure to properly
host the lab environment

11/3

Configure GCP for labs Configure GCP to properly
host the lab environment

11/15

Design Document v1 Final Final version of the first
design document version

10/4

Design Document v2 Final version of the second
design document version

10/25

Final Design Document Final version of the design
document for the project

11/15

System Block Diagram System Block diagram for
the entire system

10/3

UI description
Description of the UI to give
a basic path to how the UI
should be built

10/6

Work plan Plan of work for the project 11/1

System Design Diagrams and description
for the entire project

10/13

Detailed Design An in depth review of the
design of the project

11/4

Test Plan Plan to test if the project
meets the requirements

11/11

Course Site
Site for the project holding
information and
documentation

11/15

Table 2: Task Summary

2.2 Risks And Risk Management/Mitigation
All risks are evaluated based on the perceived impact that it might have on the
completion of the project.

Risk Evaluation Mitigation

A cloud
environment may

Low This can be mitigated by using school resources to
do the hosting of the application.This in

7

not be provided combination with the free tier AWS should be
enough for the initial development.

Cloud platforms
may not have
much overlap in
functionality

Medium This does pose a fairly considerable barrier to
implementation, but we can mitigate using a few
different techniques.

Firstly, by prioritizing the most important cloud
platforms.

Second, by using Ansible we hope to minimize
the feature set required by cloud platforms.

Note: GCP and AWS both support Ansible

With all projects
there is a
possibility that
members may
leave

Low While this is low likelihood, the best mitigation
strategy is to not divide into clear roles, in which
only one person knows how to fill any given role.

We should all have a firm grasp of each area, so
that we may spot fill in the event of a member
leaving.

Table 3: Risk Table

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

Orchestrator Flow Software flow, how will everything flow

together

Deploy Basic EC2 with basic Playbook Playbook on to deploy a EC2 on AWS cloud
platform.

Configure EC2 through playbook Playbook on to configure a EC2 on AWS
cloud platform.

Create VM from scratch Create a VM image from scratch that we can
use on the EC2

Hook Ansible to some backend call Hook up Ansible for backend software
calling and usage.

Configure automation scripts Configure scripts that will perform automatic
commands, and processes.

Create Full Demo Create a demo for the client showing

8

everything working from backend to
frontend.

Table 4: Milestones Table

2.4 Project Timeline/Schedule

Orchestrator Flow October 3, 2020

Deploy Basic EC2 with basic Playbook October 2, 2020

Configure EC2 through playbook October 7, 2020

Create VM from scratch October 13, 2020

Hook Ansible to some backend call October 20, 2020

Configure automation scripts October 27, 2020

Create Full Demo November 15, 2020

Table 5: Project Schedule Table

2.5 Project Tracking Tools & Procedures
● Team Communication

○ Discord
● Source Code Repository

○ GitLab
● Task Tracking

○ Jira
● Procedure (Agile)

○ Determine most pressing tasks from project assignments and sponsor
■ Place into our Agile Board TODO

○ Volunteer for, assign, and commit to project tasks in weekly meetings
■ Move to Agile Board In-Progress

○ Give status update on completed tasks in weekly meetings
■ Move to Agile Board Done

○ Hold each other accountable for completing assigned tasks by deadlines

2.6 Personnel Effort Requirements

Task Person
hours

Explanation

Orchestrator Flow 10 To establish a cursory flow for the orchestrator
is fine.

9

https://discord.gg/THYcEa9
https://git.linux.iastate.edu/osmankic/senior-design
https://sdmay21-39.atlassian.net/secure/RapidBoard.jspa?rapidView=1&projectKey=SD#

Deploy basic EC2
40

For each member to complete a deploy and be
knowledgeable on the topic 8 or so hours each
seems fair.

Configure EC2
40

Seems fitting as, it will likely take some
research, but ultimately shouldn’t be too time
exhaustive.

Create VM From Scratch

70

This will likely be one of the most difficult
steps moving from using premade VMs.
Has multiple parts, but this may also end up
being completed much faster that expected.

Hook Ansible to Backend
Call 20 With a backend established, having Ansible

send a message should be fine.

Configure Automation
Scripts 10

This may break this prediction, but it appears
to be rather straightforward so long as the other
steps are complete.

Create Full Demo L

Setup group cloud
environments for team use

10 Should be rather quick environments that we
can use are pretty easy to set up.

Configure AWS for labs 25 Fairly major step, but should be fairly simple.

Configure Azure for labs 30 The cloud platform that we as a group know
the least about.

Configure GCP for labs 30 The second least known cloud platform.

Design Document v1 Final 15 Not too bad about 3hrs per person seems
reasonable

Design Document v2 15 Not too bad about 3hrs per person seems
reasonable

Final Design Document 20 Not too bad about 3hrs per person seems
reasonable

System Block Diagram 10 Diagram shouldn’t be too time extensive

UI description 15
Fairly easy, for the most part would be
working with our client to ensure that it is
acceptable

Work plan 10 Pretty straight forward, and shouldn’t require

10

much effort beyond the few man hours to
implement.

System Design 25 While typically simple, it may require some
research, as well as maintenance if it changes.

Detailed Design 40
This will be quick for the initial draft, but
effort to keep it current seems reasonable to
push this upward in people hours.

Test Plan 30
This could get complex, since there doesn’t
seem to be a very clean way to test the
configuration via some framework. It may take
research, etc.

Course Site 25 Once all steps are done, it should be pretty easy
to set up, and fill out, but may take some time.

Table 6: Effort Table

2.7 Other Resource Requirements
There will be no other resource requirements.

2.8 Financial Requirements
There will be no financial requirements. This application will be developed with free
tools, and we are using the free tier of the various cloud providers.

3 Design

3.1 Previous Work
● Infrastructure

We will be using Iowa State virtual machines for the infrastructure that will be
hosting both our UI, Backend API, and database.

11

● User Interface

We will be utilizing React, a Javascript library for building user interfaces, to
build our project’s user interface. We chose to go this route because React will
allow us to build a highly functional and dynamic UI extremely quickly. We will
be able to do this because of all the external libraries that we can easily import
into our React application. A couple examples of libraries we will be using to
build our UI are: Bootstrap and Material-UI. Both of these libraries offer dynamic
components that we can pull in and start utilizing immediately to create a clean
and functional user experience.

● Backend API
We will be utilizing Flask, a Python API framework, to build our Backend API.
We chose to use Flask, because it allows us to get an API up and running
extremely quickly, and allows us to use any package that is available to Python.
Having access to Python libraries is extremely important, because libraries exist
that will allow us to interact with all the major cloud providers. Additionally,
there is a Python library for Ansible. This is ideal because we will be using
Ansible’s Infrastructure As Code functionality for provisioning and deploying our
cloud environments.

3.2 Design Thinking
We wanted our design to be easy to develop and efficient, so we decided upon a
separately hosted frontend and backend. Another thing that we thought was very
important was to use the technology that made implementing our functionality easy and
fast. Because of this, we chose React for our frontend and Python Flask for our backend.

Another design that we thought about implementing was a React frontend with API
Gateway fronting Lambda functions for the backend. There were 2 main reasons we
didn’t go this route. The first reason is that we didn’t want to provision a new AWS
Lambda for each different service that the frontend needed. This wouldn’t have been that
difficult at all, but it would have been a hassle. In Flask, all we need to do is add another
route to the code to provide another API service, and ease of development was very
important to us. The second reason is that we wanted our client to be able to host this
anywhere, and not just AWS. Using API Gateway and Lambda would have made that
impossible.

3.3 Proposed Design
We have successfully experimented with each individual technology that we will be
using during development (i.e. React, Flask, Ansible, and various cloud providers) to
verify that they will be able to serve the purpose that they need to.

12

All technologies that we have chosen to implement will be able implement all of our
functional and non-functional requirements that we have listed above.

User Interface:
A React application will be created for our project’s user interface. This application will
authenticate users via Google OAuth2 and then present users with the ability to define
new lab templates, provision labs into various cloud providers with said templates, and
view and destroy existing lab environments that were previously created. All of this
functionality will be available to our React application via the API.

API:
A Python Flask API will be created to provide all the functionality to our React frontend.
Flask will be used to route the API paths that will provide the various different
functionalities that our project needs. Depending on what a specific route or path is
doing, it may interface with Ansible or MongoDB. Ansible Playbooks are what we are
using to manage all of our cloud infrastructure, and MongoDB is what we are using to
store any data that we need that isn’t a lab template. All lab templates will be stored on
our server’s local filesystem.

Cloud Infrastructure (Labs):
We are giving users the ability to create labs within various different cloud providers
such as AWS, GCP, and Azure. A lab will be created with the user-selected template, and
placed into a network on the selected cloud provider that will make it accessible to those
trying to utilize the lab.

3.4 Design Analysis
From the design standpoint, the work that was performed with 3.3 stayed the same. After
multiple conversations with the client we accomplished a well fleshed out design that has
stayed consistent throughout the semester. As we push forward into development our
design proves to stay the same and efficient across all needs and wants when it comes to
the client and work performed for the Cloud Environment platform. The design
integration with cloud platforms along with third-party solutions like Ansible, overall
construct layers of interfaces and services that work hand-in-hand to provide the required
solution for the client.

3.5 Development Process
Using weekly meetings, and issue tracking we perform the development on the basis of
weekly development. This process allows for continuous integration and progress on
creating the solution. We use techniques like the roadmap approach to keep track of what
needs to be done vs soft features that would be nice to have. With weekly meetings it
allows us to keep track of tasks by person along with discussing what needs to be done
and what has to be done next. This approach follows the SCRUM and Agile ethics while
keeping the end goal in mind. Weekly meetings allow us to client-face which in returns

13

gives us more opportunities to ask important questions that may save time in the long run.
This approach allows us to keep development to high standards and quality for the client.

3.6 Design Plan
This project involves giving information to a user and giving that user control over
deployed environments. Due to this, a user interface is required to give the user a
convenient and easy access to the tools of the project. The user interface will then need to
connect to a backend service to do the logic for every use case. In order to administer
resources to the deployment platforms, there will need to be an environment orchestrator
that connects to different cloud and on-premises platforms. To connect all of the
individual pieces together, we abstracted everything into modules that connect to each
other via interfaces.

14

4 Testing

4.1 Unit Testing
Testing
Each class, structure, and logical module should be tested using python's “unittest”
library.
Deriving Coverage
The coverage can be derived using python’s coverage.py. This will allow us to track our
progress toward our 80+% coverage goal.
Objective
80% code coverage

4.2 Integration/Interface Testing
Interface Testing
It is important for each of our web facing APIs to be well tested and well defined. To this
end we must have a good procedure for testing both our web server, as well as the engine
endpoints.
To do so each interface should be appropriately tested along all routes, and operations. To
do this we intend to use a REST service test utility(hoppscotch.io or postman). From here
we can insure the functionality of each interface as a whole unit.

Interface List
● Front end server web interface
● Back end server REST API

Integration Testing
For this we can still utilize the tools from the interface testing plan, but now tracking
effects across the environment.
Additionally we can recruit a targeted form of blitz testing to hit an integrated
environment prior to moving into the well defined stage of acceptance testing.

4.3 Acceptance Testing
Acceptance Testing would be the final stage of testing that would be completed after the

Unit and Integration Testing. The entire application should be fully developed and should be able
to function as expected. When working on the Acceptance test, we would make sure that
assumptions and the constraints are to be considered ahead of the time. For instance, the
execution of a certain use case of the application can be affected by different operating systems

15

and web-browsers; the acceptance Tests should be performed on each operating system and web
browser that would be specified ahead of time. An example of the Acceptance testing could be if
the user would be successfully able to select/design template by following steps:

1. User is able to login/ signup through his/her credentials.
2. User is able to select the Environment that would be needed
3. Able to add the template.

a. By either loading a template or,
b. By creating a new template

The expected result should be:

● The user should be able to successfully publish the template.
For Non-Functional Testing, we would take care about the performance of the Project. By
Performance we would make sure that there is no wait time to load the pages. We would also be
keeping security of users data as our main concern. We will try to make use of Authentication
for each user. We will make sure that user credentials would be used by the user itself and no
other user would have access to it.
We would try to engage our client and professor to perform acceptance testing by using the
application at weekly meetings, and will demonstrate our current progress and functionality to
meet the requirements.

16

